Part Number Hot Search : 
80C10 ZTTMT 56ADA0 TFA9895 ADM1041A 56ADA0 H47R0 35P1Q
Product Description
Full Text Search
 

To Download TDA5240 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Product specification File under Integrated
November
96
Circuits,
ICO1
Philips Semiconductors
re
Philips Semiconductors
Product specification
Brushless
DC motor
drive
circuit
TDA5240T
FEATURES .Full-wave .Built-in .Optimum .Built-in .Three -0.85 -built-in .Thermal .Soft .Low .Tacho commutation start-up circuit commutation flyback diodes push-pull outputs: independent on motor type or motor loading (using push/pull drivers at the output stages) without position sensors
A output current current limiter protection
slope outputs for low radiation. current consumption by adaptative base-drive
output without extra sensor. for external position generator (PG) signal PG signal on one pin for easy use with a controlling
.Comparator .Built-in .Linear .PG
multiplexer
combining
internal FG and external
microprocessor control of the output stages signal output.
APPLICATIONS .General purpose spindle driver ( e.g. VCR scanner motor).
GENERAL
DESCRIPTION
The TDA5240T is a bipolar integrated circuit used to drive brushless DC motors in full-wave mode. The device senses the rotor position using an EMF-sensing technique and is ideally suited as a drive circuit for VCR scanner motors.
QUICK REFERENCE DATA Measured over full voltage and temperature ranges
MIN. TYPo
18
SYMBOL
Vp IUM Vo
PARAMETER
supply voltage range (note 1)
MAX.
UNIT
4 0.6 0.85 0.93
+ Lower transistor)
current limiting
output voltage at 10 = 100 mA(Upper
1
1.05
~
Note 1. An unstabilized supply can be used; Transients of 2 V allowed with max slope 0.1 V/J.ls.
8
November 96
2/19
Philips
Semiconductors
Product specification
Brushless
DC motor drive circuit
TDA5240T
ORDERING INFORMATION TYPE NUMBER NAME PACKAGE DESCRIPTION 20-pin small-outline; plastic VERSION SOT163AH17
TDA5240T
SO20L
Fig.1
Power derating curve
November
96
3119
Philips
Semiconductors
Product specification
Brushless
DC motor drive circuit
TDA5240T
BLOCK DIAGRAM VP
,
r
CAP-CPC
CTLIf'I
.
CAPST
MOT1
CAPCDSI
CAPCDM
..
CAPTII I I PGOUTI
,,1
MOT2 -
.
~I
PGFG
'\' r' -
MOT3
-
IMOTO
-
L
PGlfr Fig.2 Block
T
4/19
.GND2-
-tND1-
J
diagram.
.
November 96
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5240T
PINNING
SYMBOL GND1 n.c. MOT2 n.c. VP PGIN FGPG GND2 PGOUT CAP-CDM CAP-CDS CAP-ST CAP-TI CTL IN MOT0 CAP-CPC n.c. MOT3 n.c. MOT1 PIN 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 not connected driver output 2 not connected positive supply voltage position generator: input from the position detector sensor to the position detector stage (optional) FG/PG (open collector) ground supply return for control circuits position generator output of the position detector stage external capacitor connection for commutation delay timing external capacitor connection for commutation delay timing copy external capacitor connection for start-up oscillator external capacitor connection for timing non-inverting input of the control amplifier input from the start point of the motor coils external capacitor for stability of control loop not connected driver output 3 not connected driver output 1 DESCRIPTION ground (0 V) motor supply return for output stages
GND1 n.c. MOT2 NC VP PGIN FGPG GND2 PGOUT CAP-CDM
1 2 3 4 5 6 7 8 9 10
20 19 18 17
MOT1 n.c. MOT3 n.c. CAP-CPC MOT0 CTL IN CAP-TI CAP-ST CAP-CDS
TDA5240T
16 15 14 13 12 11
Fig. 3 Pin configuration
November 96
5/19
Philips
Semiconductors
Product specification
Brushless
DC motor drive circuit
TDA5240T
FUNCTIONAL
DESCRIPTION three phase motor drive function. It is unique in its combination of sensorless motor
The TDA5240T offers a sensorless drive and full-wave drive.
The TDA5240T offers protected outputs capable of handling high currents and can be used with star or delta connected motors. It can easily be adapted for different motors and applications. The TDA5240T .Sensorless .Built-in .Optimum .Built-in .Three .High .Outputs .Low .Soft offers the following commutation features:
by using the motor EMF
start-up circuit commutation, flyback diodes phase full-wave drive independent of motor type or motor loading
output current (0.85 A) protected by current limiting and thermal protection by adaptive base-drive of each output transistor
current consumption
slope outputs for low radiation frequency generator (FG) by using the motor EMF (PG) signal PG signals on one pin for easy use with a controlling
.Accurate .Comparator .Built-in .Linear
for external
position generator
multiplexer
combining
internal FG and external
microprocessor control of the output stages.
LIMITING
VALUES with the Absolute Maximum Rating System (IEC 134).
MIN. 18 all pins except Vp (VI < 8 V) MAX.
In accordance
SYMBOL
Vp VI
PARAMETER supply voltage
input voltage;
UNIT
-0.3 GND -1
Vp + 0.5 Vp Vp + VD 2.5 see power derating curve
.
Vo Vo VI I Ptot
output voltage; output voltage;
PGOUT and PG/FG MOTO, MOT1, MOT2 and MOT3
input voltage; CAP-ST, CAP- TI, CAP-CD and CAP-DC
I total power dissipation
v v v v v
~ I Tamb
I~ge
temperature
range
-55
range
+150 +70
operating
ambient temperature
-10
c c
-
November 96
6/19
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5240T
CHARACTERISTICS
VP = 14.5 V "10%; Tamb = -10 C to 70 C, unless otherwise specified Symbol Supply VP IP Supply voltage range Input current range note 1 note 2 4 - - 5.3 18 7 V mA Parameter Conditions Min Typ Max Unit
Thermal protection TSD DT Local temperature at temperature sensor causing shut-down Reduction in temperature before switch-on after shut-down 130 - 140 TSD-30 150 - C C
MOT0 - CENTER TAP VI II VCSW DVCS VH Input voltage range Input bias current Comparator Switching Level Variations in comparator switching levels Comparator input hysteresis 0.5 VMOT1, MOT2 AND MOT3 VDO Voltage drop at 25 C (Vout upper stage + Vout lower stage) DVOL DVOH ILIM Tr Tf VDHF VDLF IDM CTL IN VCTLIN VCTLIN0 GTRAN Input voltage range Offset voltage Transfer gain See Fig. 6 VCAPCPC v 1.1 V CAP-CPC = 100 nF VCTLIN = 1.5V and VCTLIN = 3 V 0 0.7 4.5 - - 5 VP - 5.5 V V V/V Variation in voltage between lower transistors Variation in voltage between upper transistors Current limiting Rise time switching output between 1.9 and 12.2 V Fall time switching output between 12.2 and 1.9 V Diode forward voltage (DH) Diode forward voltage (DL) Peak diode current IO = 100 mA IO = 500 mA in control mode; IO = 100 mA in control mode; IO = -100 mA 12 V/6.8W IO = 250 mA IO = 250 mA notes 4 and 5; see Fig. 2; IO = -500 mA notes 4 and 5; see Fig. 2; IO = 500 mA note 5 - - - - 0.6 7 16 - -1.5 - 0.93 1.65 - - 0.85 12 23 - - - 1.05 1.9 150 150 1 17 30 1.5 - 1 V V mV mV A ms ms V V A
November 96
7/19
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5240T
Symbol PG IN VI IB RI VCSW +/-VIAMP
Parameter
Conditions
Min
Typ
Max
Unit
Input voltage range Input bias current Input resistance Comparator switching level Comparator input hysteresis
-0.3 - 5 86 -
- - - 93 8
+5 650 30 107 -
V nA kW mV mV
PG OUT (open collector) VOL VOHmax tTHL Output voltage LOW Output voltage HIGH Transition time HIGH-to-LOW; CL = 50 pF; RL = 10 kW IO = 1.6 mA - - - - - 0.5 0.4 VP - V V ms
tPL
Pulse width LOW
4
-
10
ms
FG/PG (open collector) VOL VOHmax tTHL Output voltage LOW Maximum output voltage HIGH Transition time HIGH-to-LOW CL = 50 pF RL = 10 kW IO =1.6 mA - - - - - 0.5 0.4 VP - V V ms
Ratio of FG frequency and commutation frequency d tPL CAP-ST II IO VSWL VSWM VSWH CAP-TI II IOH IOL VSWL VSWM VSWH CAP-CDM II IO II/IO VIL VIH Output sink current Output source current Ratio of sink to source current Input voltage level LOW Input voltage level HIGH Output sink current Output source current HIGH Lower source current LOW Lower switching level Middle switching level Upper switching level Output sink current Output source current Lower switching level Middle switching level Upper switching level Duty factor Pulse width LOW after a PG IN pulse
- - 5
1:2 50 7
- - 15
- % ms
1.5 -2.5 - - -
2.0 -2.0 0.20 0.30 2.20
2.5 -1.5 - - -
mA mA V V V
22 -70 -6.0 - - -
30 -63 -5.3 50 0.30 2.20
38 -56 -4.6 - - -
mA mA mA mV V V
10.6 -5.3 1.85 780 2.3
16.2 -8.1 2.05 860 2.4
22 -11 2.25 940 2.55
mA mA
mV V
November 96
8/19
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5240T
Symbol CAP-CDS II IO II/IO VIL VIH CAP-CPC II IO
Parameter
Conditions
Min
Typ
Max
Unit mA mA
Output sink current Output source current Ratio of sink to source current Input voltage level LOW Input voltage level HIGH
10.1 -20.9 0.9 780 2.3
15.5 -15.5 1.025 860 2.4
20.9 -10.1 1.15 940 2.55
mV V
Output sink current Output source current
1 -100
- -
3 -30
mA mA
NOTES: 1. An unstabilized supply can be used; transients of 2 V allowed with max slope 0.1 V/ms. 2. All other inputs at 0 V; all outputs at VP and IO = 0 mA. 3. Switching levels with respect to MOT1, MOT2 and MOT3. 4. Drivers are in high impedance OFF-state. 5. The outputs are short-circuit protected by limiting the current and the IC temperature.
Fig. 4 Switching levels
November 96
9/19
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5240T
APPLICATION INFORMATION Introduction
Figure 5 shows full-wave driving of a three phase motor requires three push-pull output stages. In each of the six possible states two outputs are active, one sourcing and one sinking current. The third output presents a high impedance to the motor which enables measurement of the motor EMF in the corresponding motor coil by the EMF comparator at each output. The commutation logic is responsible for control of the output transistors and selection of the correct EMF comparator. The zero-crossing in the motor EMF (detected by the comparator selected by the commutation logic) is used to calculate the correct moment for the next commutation, that is, the change to the next output state. The delay is calculated (depending on the motor loading) by the adaptive commutation delay block. Because of high inductive loading the output stages contain flyback diodes. The output stages are also protected by a current limiting circuit and by thermal protection of the six output transistors. The zero-crossings can be used to provide speed information such as the tacho signal FG. A VCR scanner also requires a PG phase sensor. This circuit has an interface for a simple pick-up coil. A multiplexer circuit is also provided to combine the FG and PG signals in time. The TDA5240 is providing 1 multiplexed FG PG signal: pin7 (SO20) FG-PG 3 times the number of pole pairs. A PG output signal is generated; pulse width is typically 7 s.
Table 1 OUTPUT STATES
STATE 1 2 3 4 5 6
MOT1 Z H H Z L L
MOT2 L L Z H H Z
MOT3 H Z L L Z H
In Table 1, the sequence of the six possible states of the outputs has been depicted
November 96
10/19
Philips Semiconductors
Product specification
Brushless
DC motor drive circuit
TDA5240T
Fig.5 Typical application
of the TDA5240T.
November
96
11/19
Philips
Semiconductors
Product specification
Brushless
DC motor drive circuit
TDA5240T
Analog control of the motor output voltages is achieved by an internal operational amplifier fixed. Compensation of the motor pole is done by an external capacitor (CAP CPC). Both grounds GND1 and GND2 must be connected ADJUSTMENTS The system has been designed in such a way that the tolerances of the application the approximate values of the following components must still be determined: .The start capacitor; this determines the frequency of the start oscillator together.
which tranfer gain is internally
components
are not critical.
However,
.The two capacitors in the adaptive commutation delay circuit. These are important for commutation, depending on the type and loading of the motor ~ The timing capacitor; this provides the system with its timing signals note AN94070)
in determining
the optimum
moment
(This deals with the application
THE START CAPACITORS (CAP-ST) This capacitor determines the frequency of the start oscillator. It is charged and discharged, 0.05 to 2.2 V and back to 0.05 V. The time taken to complete one cycle is given by: tstart = (2.15 X C)s (with C in ~F) with a current of 2 ~A, from
The start oscillator is reset by a commutation pulse and so is only active when the system is in the start-up mode. A pulse from the start oscillator will cause the outputs to change to the next state (torque in the motor) .If the movement of the motor generates enough EMF the TDA5240T will run the motor. If the amount of EMF generated is insufficient, then the motor will move one step only and will oscillate in its new position. The amplitude of the oscillation must decrease sufficiently before the arrival of the next start pulse, to prevent the pulse arriving during the wrong phase of the oscillation. The oscillation of the motor is given by:
1
'osc
=
x ( Kt x I x J )2
November
96
12/19
Philips
Semiconductors
Product specification
Brushless
DC motor drive circuit
where: Kt = torque constant (N.m/A)
TDA5240T
I = current (A) p = number of magnetic pole-pairs
J = inertia J (kg/m2) Example: J = 72 x 10---6kg/m2, K = 25 x 10-3 N.m/A, p = 6 and I = 0.5 A; this gives f osc = 5 Hz. If the damping then a start frequency of 2 Hz can be chosen or t = 500 ms, thus C = 0.5/2 = 0.25 ~F, (choose 220 nF). THE ADAPTIVE COMMUTATION DELAY (CAP-CDM AND CAP-CDS) is high
In this circuit capacitor CAP-CDM is charged during one commutation period, with an interruption of the charging current during the diode pulse. During the next commutation period this capacitor (CAP-CDM) is discharged at twice the charging current. The charging current is 8.1 J.lA and the discharging current 16.2 J.lA ; the voltage range is from 0.9 to 2.2 V. The voltage must stay within this range at the lowest commutation frequency of interest, fc1 :
8.1 -5
-~ (C in nF) -fC1
c=
If the frequency 2.2 to 0.9 Vat
iXT:3
is lower, then a constant commutation 16.2I1A.
delay after the zero-crossing
is generated
by the discharge
from
maximum delay = (0.076 x C) ms (witch C in nF) Example: nominal commutation frequency = 900 Hz and the lowest usable frequency = 400 Hz, so: CAP-CDM = ~= 15.6 (choose 18 nF)
The other capacitor, CAP-CDS, is used to repeat the same delay by charging and discharging with 20 ~. The same value can be chosen as for CAP-CDM. Figure 7 illustrates typical voltage waveforms
I
ICOM I
!
COM
ICOM I
I
voltoge l\ I on CAP-DC ~ I
I
ZCR Fig.7 I ZCR
rT\ I~
I ZCR
COM COM I COM I I rr\ i II I~
I
I ZCR I ZCR 1 ZCR t~
CAP-CDM and CAP-CDS voltage (ZCR=ZERO-CROSSING
waveforms in normal ; COM=COMMUTATION)
running
mode.
THE TIMING CAPACITOR(CAP- TI) Capacitor CAP- TI is used for timing the successive steps within one commutation period; these steps include some
internal delays.
. November 96
13/19
Philips Semiconductors
Product specification
Brushless
DC motor drive circuit
TDA5240T
The most important function is the watchdog time in which the motor EMF has to recover from a negative diode-pulse back to a positive EMF voltage (or vice versa). A watchdog timer is a guarding function that only becomes active when the expected event does not occur within a predetermined time. The EMF usually recovers within a short time if the motor is running normally ( ms ). However, motionless or rotating in the reverse direction, then the time can be longer ( ms ). if the motor is
A watchdog time must be chosen so that it is long enough for a motor without EMF (still) and eddy currents that may stretch the voltage in a motor winding; however, it must be short enough to detect reverse rotation. If the watchdog time is made too long, then the motor may run in the wrong direction (with little torque). The capacitor is charged, with a current of 57 I1A, from 0.2 to 0.3 V. Above this level it is charged, with a current of 5 JlA, up to 2.2 V only if the selected motor EMF remains in the wrong polarity (watchdog function). At the end, or, if the motor voltage becomes positive, the capacitor is discharged with a current of 28 11A. The watchdog time is the time taken to charge the capacitor, with a current of 5 JlA, from 0.3 to 2.2 V. The value of CAP- TI is given by:
= 2.63
tm (C in nF ; t in ms)
Example: If after switching off, the voltage from a motor winding is reduced, in 3.5 ms, to within 20 mV (the offset of the EMF comparator), then the value of the required timing capacitor is given by: C = 2.63 x 3.5 = 9.2 (choose 10 nF) Typical voltage waveforms are illustrated by Fig. 8.
voltoge on CAP- TI
MKAI34
If the chosen value of CAP- TI is too small, then oscillations can occur in certain positions of a blocked rotor. If the chosen value is too large, then it is possible that the motor may run in the reverse direction (synchronously with little torque).
Fig.8 Typical CAP- TI and VMOT1 voltage waveforms
in normal running mode.
.
November 96
14/19
Philips Semiconductors
Product specification
Brushless
DC motor drive circuit
TDA5240T
OTHER DESIGN ASPECTS There are other design aspects concerning .Generation .Built-in .Reliability FG SIGNAL The FG signal is generated in the TDA5240T by using the zero-crossing of the motor EMF from the three motor windings. Every zero-crossing in a (star connected) motor winding is used to toggle the FG output signal. The FG frequency is therefore half the commutation frequency. All transitions indicate the detection of a zero-crossing (except for PG). The negative-going edges are called FG pulses because they generate an interrupt in a controlling microprocessor. The accuracy of the FG output signal Oitter) is very good. This accuracy depends on the symmetry electromagnetic construction, which also effects the satisfactory functioning of the motor itself. of the motor's of the tacho signal FG the application of the TDA5240T besides the commutation function. They are:
interface for a PG sensor. .
Two FG frequencies are given out: 6 times the number of poles pairs or 3 times the number of poles pairs. A pull-up resistor must be connected to PGFG outputs Example: A three phase motor with 6 magnetic pole-pairs at 1500 rpm and with a full-wave frequency of 25 x 6 x 6 = 900 Hz, and generates a tacho signal of 450 Hz. PG SIGNAL The accuracy of the PG signal in applications such as VCR must be high (phase information. This accuracy is obtained by combining the accurate FG signal with the PG signal by using a wide tolerance external PG sensor. The external PG signal (PGIN) is only used as an indicator to select a particular FG pulse. This pulse differs from the other FG pulses in that a ahort LOW-time of 15 ~s after a HIGH to LOW transition. All other FG pulses have a 50% duty factor (see Fig. 9). drive has a commutation
toleronce
on
PG
IN
PG IN
vAv
vAv
MOT3
PG/FG~~~~
~
Fig.9 Timing of the FG and PG signals
RELIABILITY It is necessary to protect high current circuits and the output stages are protected in two ways:
November
96
15/19
Philips Semiconductors
Product specification
Brushless
DC motor drive circuit
TDA5240T
.Current limiting of the 'lower' output transistors. The 'upper' output transistors use the same base current as the conducting 'lower' transistor (+15%). This means that the current to and from the output stages is limited. .Thermal protection when the transistor of the six output transistors is achieved by each transistor having a thermal sensor that is active is switched on. The transistors are switched off when the local temperature becomes too high.
November
96
16/19
Philips Semiconductors
Product specification
Brushless
DC motor drive circuit
TDA5240T
PACKAGE OUTliNE
0.9 (4x) 0.4
IJ
~
r-,OODP
D
20
11
1.1 ~ 1.0 2.45 2.25 0.3 0.1 , 0.32 2035 0.23 2065
pin ;B 1 index
~
-,-J
1.1 ..,\ 0.5*
10
OtO8
~
MBC234
[] []
D
IJ L
0.49 j 0.36 8
D
(20x)
~
Dimensions in mm
Fig.10
20-pin small-outline;
plastic (SO20L;SOT163A).
November
96
17/19
~
Philips Semiconductors
Product specification
Brushless
DC motor drive circuit
TDA5240T
SOLDERING Introduction There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used. This text gives a very brief insight to a complex technology. "IC Package Databook" (order code 9398 652 90011 ). Reflow soldering techniques are suitable for all sa packages. A more in-depth account of soldering ICs can be found in our
Reflow soldering .
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 C. Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 C.
Wave soldering Wave soldering .A techniques can be used for all sa packages if the following conditions are observed: technique
double-wave (a turbulent should be used. longitudinal
wave with high upward pressure followed
by a smooth laminar wave) soldering
.The .The
axis of the package footprint must incorporate
must be parallel to the solder flowend.
package footprint
solder thieves at the downstream
During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured. Maximum permissible solder temperature is 260 oC, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 oC within 6 seconds. Typical dwell time is 4 seconds at 250 oC. A mildly-activated Repairing flux will eliminate joints the need for removal of corrosive residues in most applications.
soldered
Fix the component by first soldering two diagonally- opposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 C.
November
96
18/19
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5240T
Data sheet status
Data sheet status [1] Objective specification Preliminary specification Product specification Product status [2] Development Qualification Definitions This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice. This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product. This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.
Production
[1] Please consult the most recently issued data sheet before initiating or completing a design. [2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
Definitions
Short-form specification -- The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook. Limiting values definition -- Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information -- Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
Disclaimers
Life support -- These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application. Right to make changes -- Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.
Contact information
For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825
(c) Koninklijke Philips Electronics N.V. 1996 All rights reserved. Printed in U.S.A. Date of release: 11-96
For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.
Document order number:
9397 750 08756
Philips Semiconductors
yyyy mmm dd 1


▲Up To Search▲   

 
Price & Availability of TDA5240

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X